Convex Non-Negative Matrix Factorization (Convex NMF)¶
Convex Non-Negative Matrix Factorization (Convex NMF) is a variation of NMF that constrains the dictionary (D
) to be a convex combination of input data (A
). This ensures that learned basis components are directly interpretable in terms of the original data and the dictionary elements to be in the conical hull of the data.
where:
A
(Data Matrix): Input data, shape(n_samples, n_features)
.Z
(Codes Matrix): Latent representation, shape(n_samples, nb_concepts)
, constrained to be non-negative.W
(Coefficient Matrix): Convex coefficients, shape(nb_concepts, n_samples)
, constrained to be non-negative. The dictionary is computed asD = W A
.
Basic Usage¶
from overcomplete import ConvexNMF
# define a Convex NMF model with 10k concepts using
# the multiplicative update solver
convex_nmf = ConvexNMF(nb_concepts=10_000, solver='mu')
# fit the model to input data A
Z, D = convex_nmf.fit(A)
# encode new data
Z = convex_nmf.encode(A)
# decode (reconstruct) data from codes
A_hat = convex_nmf.decode(Z)
Solvers¶
The Convex NMF module supports different optimization strategies:
- MU (Multiplicative Updates) - Standard Convex NMF update rule.
- PGD (Projected Gradient Descent) - Allows for sparsity control via L1 penalty on Z
.
For further details, we encourage you to check the original references 1.
ConvexNMF
¶
PyTorch Convex NMF-based Dictionary Learning model.
__init__(self,
nb_concepts,
device='cpu',
tol=0.0001,
strict_convex=False,
solver='pgd',
verbose=False,
l1_penalty=0.0,
**kwargs)
¶
nb_concepts,
device='cpu',
tol=0.0001,
strict_convex=False,
solver='pgd',
verbose=False,
l1_penalty=0.0,
**kwargs)
Parameters
-
nb_concepts : int
Number of components to learn.
-
device : str, optional
Device to use for tensor computations, by default 'cpu'.
-
tol : float, optional
Tolerance value for the stopping criterion, by default 1e-4.
-
strict_convex : bool, optional
Whether to enforce the convexity constraint, by default False.
-
solver : str, optional
Optimization solver to use, either 'mu' (Multiplicative Update) or 'pgd' like method, by default 'mu'.
-
verbose : bool, optional
Whether to print optimization information, by default False.
-
l1_penalty : float, optional
L1 penalty coefficient, by default 0.0. Only used with the 'pgd' solver.
init_random_z(self,
A)
¶
A)
Initialize the codes Z using non negative random values.
Parameters
-
A : torch.Tensor
Input tensor of shape (batch_size, n_features).
Return
-
Z : torch.Tensor
Initialized codes tensor.
get_dictionary(self)
¶
Return the learned dictionary components from Convex NMF.
Return
-
torch.Tensor
Dictionary components D = A W.
encode(self,
A,
max_iter=300,
tol=None)
¶
A,
max_iter=300,
tol=None)
Encode the input tensor (the data) using Convex NMF.
Parameters
-
A : torch.Tensor
Input tensor of shape (n_samples, n_features).
-
max_iter : int, optional
Maximum number of iterations, by default 300.
-
tol : float, optional
Tolerance value for the stopping criterion, by default the value set at initialization.
Return
-
torch.Tensor
Encoded features (the codes Z).
sanitize_np_input(self,
x)
¶
x)
Ensure the input tensor is a numpy array of shape (batch_size, dims).
Convert from pytorch tensor or DataLoader if necessary.
Parameters
-
x : torch.Tensor or Iterable
Input tensor of shape (batch_size, dims).
Return
-
torch.Tensor
Sanitized input tensor.
fit(self,
A,
max_iter=500)
¶
A,
max_iter=500)
Fit the Convex NMF model to the input data.
Parameters
-
A : torch.Tensor
Input tensor of shape (n_samples, n_features).
-
max_iter : int, optional
Maximum number of iterations, by default 500.
init_semi_nmf(self,
A,
max_snmf_iters=100)
¶
A,
max_snmf_iters=100)
Initialize the Convex NMF model using Semi-NMF.
Parameters
-
A : torch.Tensor
Input tensor of shape (n_samples, n_features).
-
max_snmf_iters : int, optional
Maximum number of iterations for Semi-NMF, by default 100.
Return
-
Z : torch.Tensor
Initialized codes tensor.
-
D : torch.Tensor
Initialized dictionary tensor.
init_random_w(self,
A)
¶
A)
Initialize the coefficient matrix W with non-negative random values.
Parameters
-
A : torch.Tensor
Input tensor of shape (n_samples, n_features).
Return
-
W : torch.Tensor
Initialized coefficient tensor.
sanitize_np_codes(self,
z)
¶
z)
Ensure the codes tensor (Z) is a numpy array of shape (batch_size, nb_concepts).
Convert from pytorch tensor or DataLoader if necessary.
Parameters
-
z : torch.Tensor
Encoded tensor (the codes) of shape (batch_size, nb_concepts).
Return
-
torch.Tensor
Sanitized codes tensor.
decode(self,
Z)
¶
Z)
Decode the input tensor (the codes) using Convex NMF.
Parameters
-
Z : torch.Tensor
Codes tensor of shape (n_samples, nb_concepts).
Return
-
torch.Tensor
Decoded output (the approximation of A).
-
Convex and Semi-Nonnegative Matrix Factorizations by Ding, Li, and Jordan (2008). ↩