Non-Negative Matrix Factorization (NMF)¶
Non-Negative Matrix Factorization (NMF) is a factorization method that decomposes a non-negative matrix into two lower-rank non-negative matrices. This technique is widely used in feature learning, dictionary learning, and dimensionality reduction, particularly in neural network activations.
The model consists of:
- Input Matrix (
A
): The pattern of activations in a neural network, shaped as(batch_size, n_features)
. - Codes (
Z
): The representation of data in terms of discovered concepts, shaped as(batch_size, nb_concepts)
. - Dictionary (
D
): A learned basis of concepts, shaped as(nb_concepts, n_features)
.
Basic Usage¶
from overcomplete import NMF
# define an NMF model with 10k concepts using the HALS solver
nmf = NMF(nb_concepts=10_000, solver='hals')
# fit the model to input activations A
Z, D = nmf.fit(A)
# encode new data
Z = nmf.encode(A)
# decode (reconstruct) data from codes
A_hat = nmf.decode(Z)
Solvers¶
The NMF module supports different optimization strategies: - HALS (Hierarchical Alternating Least Squares) - Efficient for large-scale problems. - MU (Multiplicative Updates) - Standard NMF update rule. - ANLS (Alternating Non-Negative Least Squares) - Robust least squares optimization. - PGD (Projected Gradient Descent) - Suitable for constrained optimization.
With HALS usually providing best reconstruction.
NMF
¶
Torch NMF-based Dictionary Learning model.
__init__(self,
nb_concepts,
device='cpu',
solver='hals',
tol=0.0001,
verbose=False,
**kwargs)
¶
nb_concepts,
device='cpu',
solver='hals',
tol=0.0001,
verbose=False,
**kwargs)
Parameters
-
nb_concepts : int
Number of components to learn.
-
device : str, optional
Device to use for tensor computations, by default 'cpu'
-
solver : str, optional
Optimization algorithm to use, by default 'hals'. Can be one of: - 'hals': Hierarchical Alternating Least Squares - 'mu': Multiplicative update rules - 'pgd': Projected Gradient Descent - 'anls': Alternating Non-negative Least Squares
-
tol : float, optional
Tolerance value for the stopping criterion, by default 1e-4.
-
verbose : bool, optional
Whether to display a progress bar, by default False.
init_random_z(self,
A)
¶
A)
Initialize the codes Z using non negative random values.
Parameters
-
A : torch.Tensor
Input tensor of shape (batch_size, n_features).
Return
-
Z : torch.Tensor
Initialized codes tensor.
init_nndsvda(self,
A)
¶
A)
Initialize the dictionary and the code using Sklearn NNDsvdA algorithm.
Parameters
-
A : torch.Tensor
Input tensor of shape (batch_size, n_features).
Return
-
Z : torch.Tensor
Initialized codes tensor.
-
D : torch.Tensor
Initialized dictionary tensor.
get_dictionary(self)
¶
Return the learned dictionary components from NMF.
Return
-
torch.Tensor
Dictionary components.
encode(self,
A,
max_iter=300,
tol=None)
¶
A,
max_iter=300,
tol=None)
Encode the input tensor (the activations) using NMF.
Parameters
-
A : torch.Tensor or Iterable
Input tensor of shape (batch_size, n_features).
-
max_iter : int, optional
Maximum number of iterations, by default 100.
-
tol : float, optional
Tolerance value for the stopping criterion, by default the value set in the constructor.
Return
-
torch.Tensor
Encoded features (the codes).
sanitize_np_input(self,
x)
¶
x)
Ensure the input tensor is a numpy array of shape (batch_size, dims).
Convert from pytorch tensor or DataLoader if necessary.
Parameters
-
x : torch.Tensor or Iterable
Input tensor of shape (batch_size, dims).
Return
-
torch.Tensor
Sanitized input tensor.
fit(self,
A,
max_iter=500)
¶
A,
max_iter=500)
Fit the NMF model to the input data.
Parameters
-
A : torch.Tensor or Iterable
Input tensor of shape (batch_size, n_features).
-
max_iter : int, optional
Maximum number of iterations, by default 500.
init_random_d(self,
A)
¶
A)
Initialize the dictionary D using non negative random values.
Parameters
-
A : torch.Tensor
Input tensor of shape (batch_size, n_features).
Return
-
D : torch.Tensor
Initialized dictionary tensor.
sanitize_np_codes(self,
z)
¶
z)
Ensure the codes tensor (Z) is a numpy array of shape (batch_size, nb_concepts).
Convert from pytorch tensor or DataLoader if necessary.
Parameters
-
z : torch.Tensor
Encoded tensor (the codes) of shape (batch_size, nb_concepts).
Return
-
torch.Tensor
Sanitized codes tensor.
decode(self,
Z)
¶
Z)
Decode the input tensor (the codes) using NMF.
Parameters
-
Z : torch.Tensor
Encoded tensor (the codes) of shape (batch_size, nb_concepts).
Return
-
torch.Tensor
Decoded output (the activations).