Semi-Nonnegative Matrix Factorization (Semi-NMF)¶
Semi-Nonnegative Matrix Factorization (Semi-NMF) is a variant of NMF that relaxes the constraint on the code matrix (Z
), allowing negative values while keeping the dictionary (D
) nonnegative. The model consists of:
- Input Matrix (
A
): The pattern of activations in a neural network, shaped as(batch_size, n_features)
. - Codes (
Z
): The representation of data in terms of discovered concepts, shaped as(batch_size, nb_concepts)
, and can take negative values. - Dictionary (
D
): A learned basis of concepts, shaped as(nb_concepts, n_features)
, constrained to be nonnegative.
Basic Usage¶
from overcomplete import SemiNMF
# define a Semi-NMF model with 10k concepts using
# the multiplicative update solver
semi_nmf = SemiNMF(nb_concepts=10_000, solver='mu')
# fit the model to input activations A
Z, D = semi_nmf.fit(A)
# encode new data
Z = semi_nmf.encode(A)
# decode (reconstruct) data from codes
A_hat = semi_nmf.decode(Z)
Solvers¶
The Semi-NMF module supports different optimization strategies:
- MU (Multiplicative Updates) - Standard Semi-NMF update rule.
- PGD (Projected Gradient Descent) - Allows for sparsity control via L1 penalty on Z
.
For further details, we encourage you to check the original references 1.
SemiNMF
¶
Torch Semi-NMF-based Dictionary Learning model.
__init__(self,
nb_concepts,
solver='mu',
device='cpu',
tol=0.0001,
l1_penalty=0.0,
verbose=False,
**kwargs)
¶
nb_concepts,
solver='mu',
device='cpu',
tol=0.0001,
l1_penalty=0.0,
verbose=False,
**kwargs)
Parameters
-
nb_concepts : int
Number of components to learn.
-
solver : str, optional
Solver to use, by default 'mu'. Possible values are 'mu' (multiplicative update) and 'pgd' (projected gradient descent), 'pgd' allows for sparsity penalty.
-
device : str, optional
Device to use for tensor computations, by default 'cpu'
-
tol : float, optional
Tolerance value for the stopping criterion, by default 1e-4.
-
l1_penalty : float, optional
L1 penalty for the sparsity constraint, by default 0.0. Only used with 'pgd' solver.
-
verbose : bool, optional
Whether to print the status of the optimization, by default False.
init_random_z(self,
A)
¶
A)
Initialize the codes Z using random values (can be negative).
Parameters
-
A : torch.Tensor
Input tensor of shape (batch_size, n_features).
Return
-
Z : torch.Tensor
Initialized codes tensor.
get_dictionary(self)
¶
Return the learned dictionary components from Semi-NMF.
Return
-
torch.Tensor
Dictionary components.
encode(self,
A,
max_iter=300,
tol=None)
¶
A,
max_iter=300,
tol=None)
Encode the input tensor (the activations) using Semi-NMF.
Parameters
-
A : torch.Tensor or Iterable
Input tensor of shape (batch_size, n_features).
-
max_iter : int, optional
Maximum number of iterations, by default 300.
-
tol : float, optional
Tolerance value for the stopping criterion, by default the value set in the constructor.
Return
-
torch.Tensor
Encoded features (the codes).
sanitize_np_input(self,
x)
¶
x)
Ensure the input tensor is a numpy array of shape (batch_size, dims).
Convert from pytorch tensor or DataLoader if necessary.
Parameters
-
x : torch.Tensor or Iterable
Input tensor of shape (batch_size, dims).
Return
-
torch.Tensor
Sanitized input tensor.
fit(self,
A,
max_iter=500)
¶
A,
max_iter=500)
Fit the Semi-NMF model to the input data.
Parameters
-
A : torch.Tensor or Iterable
Input tensor of shape (batch_size, n_features).
-
max_iter : int, optional
Maximum number of iterations, by default 500.
init_random_d(self,
A,
Z)
¶
A,
Z)
Initialize the dictionary D using matrix inversion.
Parameters
-
A : torch.Tensor
Input tensor of shape (batch_size, n_features).
-
Z : torch.Tensor
Codes tensor of shape (batch_size, nb_concepts).
Return
-
D : torch.Tensor
Initialized dictionary tensor.
sanitize_np_codes(self,
z)
¶
z)
Ensure the codes tensor (Z) is a numpy array of shape (batch_size, nb_concepts).
Convert from pytorch tensor or DataLoader if necessary.
Parameters
-
z : torch.Tensor
Encoded tensor (the codes) of shape (batch_size, nb_concepts).
Return
-
torch.Tensor
Sanitized codes tensor.
decode(self,
Z)
¶
Z)
Decode the input tensor (the codes) using Semi-NMF.
Parameters
-
Z : torch.Tensor
Encoded tensor (the codes) of shape (batch_size, nb_concepts).
Return
-
torch.Tensor
Decoded output (the activations).
-
Convex and Semi-Nonnegative Matrix Factorizations by Ding, Li, and Jordan (2008). ↩