Batch TopK SAE¶
Batch TopK SAE is a variation of the standard Sparse Autoencoder (SAE) that enforces structured sparsity at the batch level using a global Top-K selection mechanism. Instead of selecting the K largest activations per sample, this method selects the top-K activations across the entire batch, ensuring a controlled level of sparsity.
The architecture follows the standard SAE framework, consisting of an encoder, a decoder, and a forward method:
- encodereturns the pre-codes (- z_pre, before thresholding) and codes (- z) given an input (- x).
- decodereturns a reconstructed input (- x_hat) based on an input (- x).
- forwardreturns the pre-codes, codes, and reconstructed input.
We strongly encourage you to check the original paper 1 to learn more about Batch TopK SAE.
Basic Usage¶
from overcomplete import BatchTopKSAE
# define a Batch TopK SAE with input dimension 768, 10k concepts
# and top_k = 50 (for the entire batch!)
sae = BatchTopKSAE(768, 10_000, top_k=50)
# the threshold momentum is used to estimate
# the final threshold (when in eval)
sae = BatchTopKSAE(768, 10_000, top_k=10, threshold_momentum=0.95)
# ... training sae
sae = sae.eval()
# now top_k is no longer use and instead an
# internal threshold is used
print(sae.running_threshold)
BatchTopKSAE¶
Batch Top-k Sparse SAE.
__init__(self,
         input_shape,
         nb_concepts,
         top_k=None,
         threshold_momentum=0.9,
         encoder_module=None,
         dictionary_params=None,
         device='cpu')¶
input_shape,
nb_concepts,
top_k=None,
threshold_momentum=0.9,
encoder_module=None,
dictionary_params=None,
device='cpu')
Parameters
- 
input_shape : int or tuple of int - Dimensionality of the input data (excluding the batch dimension). 
 
- 
nb_concepts : int - Number of latent dimensions (components) of the autoencoder. 
 
- 
top_k : int - The number of activations to keep (the kth highest activation is used as threshold). 
 
- 
threshold_momentum : float, optional - Momentum for the running threshold update (default is 0.9). 
 
- 
encoder_module : nn.Module or str, optional - Custom encoder module (or its registered name). If None, a default encoder is used. 
 
- 
dictionary_params : dict, optional - Parameters that will be passed to the dictionary layer. - See DictionaryLayer for more details. 
 
- 
device : str, optional - Device on which to run the model (default is 'cpu'). 
 
forward(self,
        x)¶
x)
Perform a forward pass through the autoencoder.
Parameters
- 
x : torch.Tensor - Input tensor of shape (batch_size, input_size). 
 
Return
- 
SAEOuput - Return the pre_codes (z_pre), codes (z) and reconstructed input tensor (x_hat). 
 
encode(self,
       x)¶
x)
Encode input data and apply global top-k thresholding.
Parameters
- 
x : torch.Tensor - Input tensor of shape (batch_size, input_size). 
 
Return
- 
pre_codes : torch.Tensor - The raw outputs from the encoder. 
 
- 
z : torch.Tensor - The sparse latent representation after thresholding. 
 
decode(self,
       z)¶
z)
Decode latent representation to reconstruct input data.
Parameters
- 
z : torch.Tensor - Latent representation tensor of shape (batch_size, nb_components). 
 
Return
- 
torch.Tensor - Reconstructed input tensor of shape (batch_size, input_size). 
 
get_dictionary(self)¶
Return the learned dictionary.
Return
- 
torch.Tensor - Learned dictionary tensor of shape (nb_components, input_size). 
 
- 
Batch Top-k Sparse Autoencoders by Bussmann et al. (2024). ↩