Skip to content

TopK SAE

TopK SAE is a variation of the standard Sparse Autoencoder (SAE) that enforces structured sparsity using a Top-K selection mechanism. This method ensures that only the K most significant activations are retained in the encoded representation, promoting interpretability and feature selection.

The architecture follows the standard SAE framework, consisting of an encoder, a decoder, and a forward method:

  • encode returns the pre-codes (z_pre, before activation) and codes (z) given an input (x).
  • decode returns a reconstructed input (x_hat) based on an input (x).
  • forward returns the pre-codes, codes, and reconstructed input.

We strongly encourage you to check the original paper 1 to learn more about TopK SAE.

Basic Usage

from overcomplete import TopKSAE

# define a TopK SAE with input dimension 768, 10k concepts
sae = TopKSAE(768, 10_000, top_k=5)

# adjust the encoder module (you can also)
# directly pass your own encoder module
sae = TopKSAE(768, 10_000, top_k=10,
              encoder_module='mlp_bn_1')

TopKSAE

Top-k Sparse SAE.

__init__(self,
         input_shape,
         nb_concepts,
         top_k=None,
         encoder_module=None,
         dictionary_params=None,
         device='cpu')

Parameters

  • input_shape : int or tuple of int

    • Dimensionality of the input data, do not include batch dimensions.

      It is usually 1d (dim), 2d (seq length, dim) or 3d (dim, height, width).

  • nb_concepts : int

    • Number of components/concepts in the dictionary. The dictionary is overcomplete if the number of concepts > in_dimensions.

  • top_k : int, optional

    • Number of top activations to keep in the latent representation, by default n_components // 10 (sparsity of 90%).

  • encoder_module : nn.Module or string, optional

    • Custom encoder module, by default None.

      If None, a simple Linear + BatchNorm default encoder is used.

      If string, the name of the registered encoder module.

  • dictionary_params : dict, optional

    • Parameters that will be passed to the dictionary layer.

      See DictionaryLayer for more details.

  • device : str, optional

    • Device to run the model on, by default 'cpu'.

forward(self,
        x)

Perform a forward pass through the autoencoder.

Parameters

  • x : torch.Tensor

    • Input tensor of shape (batch_size, input_size).

Return

  • SAEOuput

    • Return the pre_codes (z_pre), codes (z) and reconstructed input tensor (x_hat).


encode(self,
       x)

Encode input data to latent representation.

Parameters

  • x : torch.Tensor

    • Input tensor of shape (batch_size, input_size).

Return

  • pre_codes : torch.Tensor

    • Pre-codes tensor of shape (batch_size, nb_components) before the relu and top-k operation.

  • z : torch.Tensor

    • Codes, latent representation tensor (z) of shape (batch_size, nb_components).


decode(self,
       z)

Decode latent representation to reconstruct input data.

Parameters

  • z : torch.Tensor

    • Latent representation tensor of shape (batch_size, nb_components).

Return

  • torch.Tensor

    • Reconstructed input tensor of shape (batch_size, input_size).


get_dictionary(self)

Return the learned dictionary.

Return

  • torch.Tensor

    • Learned dictionary tensor of shape (nb_components, input_size).